Grape pomace is the main by-product of vine-winery chains. It requires adequate treatment and disposal but is also an economically underused source of bioactive plant secondary metabolites. This study aimed to investigate the antibacterial effects of polyphenolic extracts from Aglianico (Vitis vinifera L.) grape pomace. In particular, hydroethanolic extracts obtained via an ultrasonic-assisted extraction technique were selected for antimicrobial tests. The extracts were screened for their antibacterial effects against foodborne pathogens that were both Gram-positive, in the case of Staphylococcus aureus and Bacillus cereus, and Gram-negative, in the case of Escherichia coli and Salmonella enterica subsp. enterica serovar Typhimurium, showing variable bacteriostatic and bactericidal effects. In addition, our results demonstrated that the tested grape pomace extracts can reduce the inhibitory concentration of standard antibiotics. Interestingly, selected extracts inhibited biofilm development by S. aureus and B. cereus. Overall, these new insights into the antibacterial properties of grape pomace extracts may represent a relevant step in the design of novel therapeutic tools to tackle foodborne diseases, and in the management of resistant biofilm-related infections.
Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens
Sateriale D.;Forgione G.;Paolucci M.;Pagliarulo C.
2024-01-01
Abstract
Grape pomace is the main by-product of vine-winery chains. It requires adequate treatment and disposal but is also an economically underused source of bioactive plant secondary metabolites. This study aimed to investigate the antibacterial effects of polyphenolic extracts from Aglianico (Vitis vinifera L.) grape pomace. In particular, hydroethanolic extracts obtained via an ultrasonic-assisted extraction technique were selected for antimicrobial tests. The extracts were screened for their antibacterial effects against foodborne pathogens that were both Gram-positive, in the case of Staphylococcus aureus and Bacillus cereus, and Gram-negative, in the case of Escherichia coli and Salmonella enterica subsp. enterica serovar Typhimurium, showing variable bacteriostatic and bactericidal effects. In addition, our results demonstrated that the tested grape pomace extracts can reduce the inhibitory concentration of standard antibiotics. Interestingly, selected extracts inhibited biofilm development by S. aureus and B. cereus. Overall, these new insights into the antibacterial properties of grape pomace extracts may represent a relevant step in the design of novel therapeutic tools to tackle foodborne diseases, and in the management of resistant biofilm-related infections.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.