Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics. © 2012 Nature America, Inc. All rights reserved.

Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1

Imperatore R.;
2012-01-01

Abstract

Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics. © 2012 Nature America, Inc. All rights reserved.
2012
Aging; Amidohydrolases; Animals; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Brain; Brain Neoplasms; Capsaicin; Cell Movement; Culture Media, Conditioned; Dopamine; Endocannabinoids; Ethanolamines; Female; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, SCID; Neoplasm Proteins; Neural Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; RNA, Small Interfering; Real-Time Polymerase Chain Reaction; TRPV Cation Channels; Tumor Cells, Cultured
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/42872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 148
  • ???jsp.display-item.citation.isi??? 138
social impact