In this study, authors address high-range-resolution (HRR) profile reconstruction, when stepped-frequency waveforms are eventually used to maintain a narrow instantaneous bandwidth, resorting to the sparse learning via iterative minimisation (SLIM) paradigm, a regularised minimisation approach with an lqlq -norm constraint (for 0

HRR profile estimation using SLIM (High Range Resolution Profile Estimation using Sparse Learning via Iterative Minimization)

Pia Addabbo
;
Antonio De Maio
;
Silvia Liberata Ullo
2019-01-01

Abstract

In this study, authors address high-range-resolution (HRR) profile reconstruction, when stepped-frequency waveforms are eventually used to maintain a narrow instantaneous bandwidth, resorting to the sparse learning via iterative minimisation (SLIM) paradigm, a regularised minimisation approach with an lqlq -norm constraint (for 0
2019
learning (artificial intelligence) , Bayes methods , minimisation , least squares approximations , iterative methods , maximum likelihood estimation , radar resolution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/38505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact