In this paper we study a class of set-valued dy- namical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.

Time-stepping Methods for Constructing Periodic Solutions in Maximally Monotone Set-valued Dynamical Systems

Vasca F;
2014-01-01

Abstract

In this paper we study a class of set-valued dy- namical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.
2014
maximal monotone; periodic solution; switched systems
File in questo prodotto:
File Dimensione Formato  
published_2014_cdc_max_monotone_periodic_sol.pdf

non disponibili

Licenza: Non specificato
Dimensione 184.97 kB
Formato Adobe PDF
184.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/9527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact