A suite of statistical procedures aimed at assessing to what extent polarimetric and/or multifrequency synthetic aperture radar (SAR) images of the sea surface can be modeled in terms of spherically invariant random vectors and matrices (SIRVs and SIRMs) is presented. The proposed tests assume that images can be described by resorting to the compound-Gaussian model, but do not require any a priori knowledge about the actual first-order probability density function (pdf) of the texture. The tests have also been used to analyze three data sets from SIR-C/X-SAR missions.
Titolo: | Fitting a statistical model to SIR-C SAR images of the sea surface | |
Autori interni: | ||
Data di pubblicazione: | 2004 | |
Rivista: | ||
Handle: | http://hdl.handle.net/20.500.12070/837 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
AES04b.pdf | N/A | Non specificato | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.