We investigate the properties of edge preserving smoothing in the context of Finite Markov Random Fields (FMRF). Our main result follows from the definition of discontinuity adaptive potential for FMRF which imposes to penalize linearly image gradients. This is in agreement with the Total Variation based regularization approach to image recovery and analysis. We also report a fast computational algorithm exploiting the finiteness of the field, it uses integer arithmetic and a gradient descent updating procedure. Numerical results on real images and comparisons with anisotropic diffusion and half-quadratic regularization are reported.

Fast edge preserving picture recovery by finite markov random fields

CECCARELLI M
2005

Abstract

We investigate the properties of edge preserving smoothing in the context of Finite Markov Random Fields (FMRF). Our main result follows from the definition of discontinuity adaptive potential for FMRF which imposes to penalize linearly image gradients. This is in agreement with the Total Variation based regularization approach to image recovery and analysis. We also report a fast computational algorithm exploiting the finiteness of the field, it uses integer arithmetic and a gradient descent updating procedure. Numerical results on real images and comparisons with anisotropic diffusion and half-quadratic regularization are reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/8087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact