The study of ground motion amplification produced by surface geology is extremely interesting in the Benevento area, Southern Italy, as it is characterized by high seismic hazard. The present moderate-to-low seismicity makes the noise method appropriate to estimate the seismic site response in the area. The three components of seismic noise have been recorded in five sites in the Benevento metropolitan area characterized by different surface geology, in order to estimate the seismic site response. In evaluating site amplification effects we used the direct interpretation of amplitude spectra and standard spectral ratio techniques, evaluating sediment-to-bedrock, sediment-to-average and H/V spectral ratios. The temporal evolution of the noise spectra is analysed within one day, in order to assess the stationarity of the noise signal. The noise wavefield properties have been studied through polarization analyses in selected bands of frequency, where spectral peaks are observed to dominate, to better understand the real nature of those peaks. Results give evidence of low amplification levels, missing any correlation between spectral amplitudes and sediment thickness over the basement. We interpret this result as due to the poor impedance contrast between sediments and basement, which is characterized by low values of shear waves velocity. Moreover, sharp amplitude peaks are observed in the raw spectra of the sediment-sites, in the 2–4 Hz frequency band; a numerical simulation interprets this effect as possibly associated with a wide-scale structure, invoking the presence of a sharper impedance contrast at greater depth. At high frequencies the action of ambient noise sources, mainly active on horizontal components of motion, is retained dominant to generate the prominent peaks observed in the H/V spectral ratios; in some cases the presence of a nearsurface low-velocity layer can contribute to amplify the seismic motion generated at these frequencies.
Local site effects in the town of Benevento (Italy) from noise measurements
MARESCA R;DE MATTEIS R.;
2003-01-01
Abstract
The study of ground motion amplification produced by surface geology is extremely interesting in the Benevento area, Southern Italy, as it is characterized by high seismic hazard. The present moderate-to-low seismicity makes the noise method appropriate to estimate the seismic site response in the area. The three components of seismic noise have been recorded in five sites in the Benevento metropolitan area characterized by different surface geology, in order to estimate the seismic site response. In evaluating site amplification effects we used the direct interpretation of amplitude spectra and standard spectral ratio techniques, evaluating sediment-to-bedrock, sediment-to-average and H/V spectral ratios. The temporal evolution of the noise spectra is analysed within one day, in order to assess the stationarity of the noise signal. The noise wavefield properties have been studied through polarization analyses in selected bands of frequency, where spectral peaks are observed to dominate, to better understand the real nature of those peaks. Results give evidence of low amplification levels, missing any correlation between spectral amplitudes and sediment thickness over the basement. We interpret this result as due to the poor impedance contrast between sediments and basement, which is characterized by low values of shear waves velocity. Moreover, sharp amplitude peaks are observed in the raw spectra of the sediment-sites, in the 2–4 Hz frequency band; a numerical simulation interprets this effect as possibly associated with a wide-scale structure, invoking the presence of a sharper impedance contrast at greater depth. At high frequencies the action of ambient noise sources, mainly active on horizontal components of motion, is retained dominant to generate the prominent peaks observed in the H/V spectral ratios; in some cases the presence of a nearsurface low-velocity layer can contribute to amplify the seismic motion generated at these frequencies.File | Dimensione | Formato | |
---|---|---|---|
Maresca-et-al-2003-PAGEOPH-03-160-1745-1764.pdf
non disponibili
Licenza:
Non specificato
Dimensione
901.36 kB
Formato
Adobe PDF
|
901.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.