In this paper we study the dependence relationship among a response and two or more predictor variables in a flattened contingency table. Considering ordinal categorical variables, the main aim is to preserve the ordinal compliance of categories by using a monotone function and optimal scaling for the first axis and Partial Least Squares for the remaining ones.

Joint Non-Symmetric Correspondence Analysis with Ordered Categories

AMENTA P.
2002-01-01

Abstract

In this paper we study the dependence relationship among a response and two or more predictor variables in a flattened contingency table. Considering ordinal categorical variables, the main aim is to preserve the ordinal compliance of categories by using a monotone function and optimal scaling for the first axis and Partial Least Squares for the remaining ones.
2002
3-540-43233-7
Non-Symmetric Correspondence Analysis; Flattened Contingency Tables; Ordinal Variables; Optimal Scaling; Partial Least Squares Regression
File in questo prodotto:
File Dimensione Formato  
Joint Non-Symmetric Correspondence Analysis with Ordered Categories.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/7303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact