We present an experimental and theoretical study of row switching in two-dimensional Josephson junction arrays. We have observed novel dynamic states with peculiar percolative patterns of the voltage drop inside the arrays. These states were directly visualized using laser scanning microscopy and manifested by fine branching in the current-voltage characteristics of the arrays. Numerical simulations show that such percolative patterns have an intrinsic origin and occur independently of positional disorder. We argue that the appearance of these dynamic states is due to the presence of various metastable superconducting states in arrays.

Broken symmetry of row switching in 2D Josephson junctions arrays

FILATRELLA G;
1999-01-01

Abstract

We present an experimental and theoretical study of row switching in two-dimensional Josephson junction arrays. We have observed novel dynamic states with peculiar percolative patterns of the voltage drop inside the arrays. These states were directly visualized using laser scanning microscopy and manifested by fine branching in the current-voltage characteristics of the arrays. Numerical simulations show that such percolative patterns have an intrinsic origin and occur independently of positional disorder. We argue that the appearance of these dynamic states is due to the presence of various metastable superconducting states in arrays.
File in questo prodotto:
File Dimensione Formato  
brokenprl.pdf

non disponibili

Licenza: Non specificato
Dimensione 803.39 kB
Formato Adobe PDF
803.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact