Soil contamination by potentially toxic elements (PTEs) poses a major environmental concern. The distribution and concentration of these elements can vary significantly in polluted areas, making detailed assessments crucial. A comprehensive analysis is essential to accurately characterise contamination patterns, as a foundation for effective site evaluation and remediation efforts. This study evaluates the effectiveness and reliability of X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determining PTEs in soil samples. Statistical analyses reveal significant differences between the two techniques for Sr, Ni, Cr, V, As, and Zn, likely due to variations in detection sensitivity, calibration methods, or matrix effects. Pb exhibits a weaker difference, suggesting a potential, yet statistically insignificant, difference between methods. Correlation analyses indicate a strong linear relationship for Ni and Cr, while Zn and Sr display high variability, limiting direct comparability. Bland–Altman plots highlight systematic biases, particularly for V, where XRF consistently underestimates concentrations compared to ICP-MS. These findings underscore the importance of selecting the appropriate analytical technique based on detection limits, sample characteristics, and measurement reliability. While both methods provide valuable insights for environmental monitoring, carefully considering their limitations is crucial for accurate contamination assessment.
Comparative Evaluation of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-Ray Fluorescence (XRF) Analysis Techniques for Screening Potentially Toxic Elements in Soil
Domenico Cicchella
2025-01-01
Abstract
Soil contamination by potentially toxic elements (PTEs) poses a major environmental concern. The distribution and concentration of these elements can vary significantly in polluted areas, making detailed assessments crucial. A comprehensive analysis is essential to accurately characterise contamination patterns, as a foundation for effective site evaluation and remediation efforts. This study evaluates the effectiveness and reliability of X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determining PTEs in soil samples. Statistical analyses reveal significant differences between the two techniques for Sr, Ni, Cr, V, As, and Zn, likely due to variations in detection sensitivity, calibration methods, or matrix effects. Pb exhibits a weaker difference, suggesting a potential, yet statistically insignificant, difference between methods. Correlation analyses indicate a strong linear relationship for Ni and Cr, while Zn and Sr display high variability, limiting direct comparability. Bland–Altman plots highlight systematic biases, particularly for V, where XRF consistently underestimates concentrations compared to ICP-MS. These findings underscore the importance of selecting the appropriate analytical technique based on detection limits, sample characteristics, and measurement reliability. While both methods provide valuable insights for environmental monitoring, carefully considering their limitations is crucial for accurate contamination assessment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.