The paper presents a new e-textile-based system, named SWEET Shirt, for the remote monitoring of biomedical signals. The system includes a textile sensing shirt, an electronic unit for data transmission, a custom-made Android application for real-time signal visualisation and a software desktop for advanced digital signal processing. The device allows for the acquisition of electrocardiographic, bicep electromyographic and trunk acceleration signals. The sensors, electrodes, and bus structures are all integrated within the textile garment, without any discomfort for users. A wide-ranging set of algorithms for signal processing were also developed for use within the system, allowing clinicians to rapidly obtain a complete and schematic overview of a patient's clinical status. The aim of this work was to present the design and development of the device and to provide a validation analysis of the electrocardiographic measurement and digital processing. The results demonstrate that the information contained in the signals recorded by the novel system is comparable to that obtained via a standard medical device commonly used in clinical environments. Similarly encouraging results were obtained in the comparison of the variables derived from the signal processing.

Design and validation of an e-textile-based wearable system for remote health monitoring

Cesarelli M.;
2021-01-01

Abstract

The paper presents a new e-textile-based system, named SWEET Shirt, for the remote monitoring of biomedical signals. The system includes a textile sensing shirt, an electronic unit for data transmission, a custom-made Android application for real-time signal visualisation and a software desktop for advanced digital signal processing. The device allows for the acquisition of electrocardiographic, bicep electromyographic and trunk acceleration signals. The sensors, electrodes, and bus structures are all integrated within the textile garment, without any discomfort for users. A wide-ranging set of algorithms for signal processing were also developed for use within the system, allowing clinicians to rapidly obtain a complete and schematic overview of a patient's clinical status. The aim of this work was to present the design and development of the device and to provide a validation analysis of the electrocardiographic measurement and digital processing. The results demonstrate that the information contained in the signals recorded by the novel system is comparable to that obtained via a standard medical device commonly used in clinical environments. Similarly encouraging results were obtained in the comparison of the variables derived from the signal processing.
2021
E-textile
Electrocardiography
Internet of Things
M-health
Wearable devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/67648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact