Premature shear failure in reinforced concrete (RC) beam-column joints (BCJs) or at the top of columns can significantly compromise a building's seismic response, leading to major damage or global collapse, as observed in the aftermath of recent seismic events. Local strengthening solutions based on the employment of fiber-reinforced polymers (FRPs) are effective at increasing shear strength and preventing the failure of BCJs, and are also quick and easy to apply. This has led to their increased use in recent postearthquake reconstruction processes. However, large-scale plans to mitigate seismic risk require strengthening solutions that produce a minimum level of disruption and do not prevent the use of buildings. This can be achieved only by conducting work from a structure's exterior. This paper, therefore, proposes a novel FRP strengthening layout for exterior RC BCJs that combines the use of quadriaxial fabric and mechanical FRP spike anchors. In order to validate the proposed solution and quantify the effects of the number of layers and anchors, four full-scale BCJs are tested under a constant axial load and reversed cyclic displacement. The results are presented and discussed in relation to: global subassembly and local joint-panel response, energy dissipation, and the strain demand on the FRP fibers. A comparison with current available design formulations for anchored-FRP fabrics is made to produce preliminary design criteria. © 2024 American Society of Civil Engineers.

Minimally Invasive FRP Strengthening of External Beam–Column Joints

Del Vecchio, Ciro
Investigation
;
Balsamo, Alberto;
2024-01-01

Abstract

Premature shear failure in reinforced concrete (RC) beam-column joints (BCJs) or at the top of columns can significantly compromise a building's seismic response, leading to major damage or global collapse, as observed in the aftermath of recent seismic events. Local strengthening solutions based on the employment of fiber-reinforced polymers (FRPs) are effective at increasing shear strength and preventing the failure of BCJs, and are also quick and easy to apply. This has led to their increased use in recent postearthquake reconstruction processes. However, large-scale plans to mitigate seismic risk require strengthening solutions that produce a minimum level of disruption and do not prevent the use of buildings. This can be achieved only by conducting work from a structure's exterior. This paper, therefore, proposes a novel FRP strengthening layout for exterior RC BCJs that combines the use of quadriaxial fabric and mechanical FRP spike anchors. In order to validate the proposed solution and quantify the effects of the number of layers and anchors, four full-scale BCJs are tested under a constant axial load and reversed cyclic displacement. The results are presented and discussed in relation to: global subassembly and local joint-panel response, energy dissipation, and the strain demand on the FRP fibers. A comparison with current available design formulations for anchored-FRP fabrics is made to produce preliminary design criteria. © 2024 American Society of Civil Engineers.
2024
Fiber-reinforced polymer (FRP) spike anchor; Fiber-reinforced polymers; Joint cracking; Retrofit; Seismic risk mitigation; Shear failure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/67244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact