: This chapter shows applying the Asymmetric Within-Sample Transformation to single-cell RNA-Seq data matched with a previous dropout imputation. The asymmetric transformation is a special winsorization that flattens low-expressed intensities and preserves highly expressed gene levels. Before a standard hierarchical clustering algorithm, an intermediate step removes noninformative genes according to a threshold applied to a per-gene entropy estimate. Following the clustering, a time-intensive algorithm is shown to uncover the molecular features associated with each cluster. This step implements a resampling algorithm to generate a random baseline to measure up/downregulated significant genes. To this aim, we adopt a GLM model as implemented in DESeq2 package. We render the results in graphical mode. While the tools are standard heat maps, we introduce some data scaling to clarify the results' reliability.

Unsupervised Single-Cell Clustering with Asymmetric Within-Sample Transformation and Per-Cluster Supervised Features Selection

Pagnotta, Stefano Maria
2024-01-01

Abstract

: This chapter shows applying the Asymmetric Within-Sample Transformation to single-cell RNA-Seq data matched with a previous dropout imputation. The asymmetric transformation is a special winsorization that flattens low-expressed intensities and preserves highly expressed gene levels. Before a standard hierarchical clustering algorithm, an intermediate step removes noninformative genes according to a threshold applied to a per-gene entropy estimate. Following the clustering, a time-intensive algorithm is shown to uncover the molecular features associated with each cluster. This step implements a resampling algorithm to generate a random baseline to measure up/downregulated significant genes. To this aim, we adopt a GLM model as implemented in DESeq2 package. We render the results in graphical mode. While the tools are standard heat maps, we introduce some data scaling to clarify the results' reliability.
2024
9781071638859
9781071638866
Asymmetric within-sample transformation
Generalized linear models
Human breast epithelial tissue
Resampling
Single-cell RNA-Seq
Single-cell clustering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/65459
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact