This paper investigates the problem of event-triggered control for the synchronization of networks of nonlinear dynamical agents; distributed model-based approaches able to guarantee the synchronization of the overall system are derived. In these control schemes all the agents use a model of their neighbourhood in order to generate triggering instants in which the local controller is updated and, if needed, local information based on the adopted control input is broadcasted to neighbouring agents, Synchronization of the network is proved and the existence of Zeno behaviour is excluded; an event triggered strategy able to guarantee the existence of a minimum lower bound between inter-event times for broadcasted information and for control signal updating is proposed, thus allowing applications where both the communication bandwidth and the maximum updating frequency of actuators are critical. This idea is further extended in an asynchronous periodic event-triggered schemes where the agents check a trigger condition via a periodic distributed communication without requiring a model based computation. (C) 2016 Elsevier Ltd. All rights reserved.

Distributed model based event-triggered control for synchronization of multi-agent systems

Liuzza, Davide;di Bernardo, Mario;
2016-01-01

Abstract

This paper investigates the problem of event-triggered control for the synchronization of networks of nonlinear dynamical agents; distributed model-based approaches able to guarantee the synchronization of the overall system are derived. In these control schemes all the agents use a model of their neighbourhood in order to generate triggering instants in which the local controller is updated and, if needed, local information based on the adopted control input is broadcasted to neighbouring agents, Synchronization of the network is proved and the existence of Zeno behaviour is excluded; an event triggered strategy able to guarantee the existence of a minimum lower bound between inter-event times for broadcasted information and for control signal updating is proposed, thus allowing applications where both the communication bandwidth and the maximum updating frequency of actuators are critical. This idea is further extended in an asynchronous periodic event-triggered schemes where the agents check a trigger condition via a periodic distributed communication without requiring a model based computation. (C) 2016 Elsevier Ltd. All rights reserved.
2016
Event-triggered control
Synchronization
Multi-agent systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/63097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? ND
social impact