Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
The SHiP experiment at the proposed CERN SPS Beam Dump Facility
Ahdida, C.;Akmete, A.;Albanese, R.;Alt, J.;Alexandrov, A.;Anokhina, A.;Aoki, S.;Arduini, G.;Atkin, E.;Azorskiy, N.;Back, J. J.;Bagulya, A.;Baaltasar Dos Santos, F.;Baranov, A.;Bardou, F.;Barker, G. J.;Battistin, M.;Bauche, J.;Bay, A.;Bayliss, V.;Berdnikov, A. Y.;Berdnikov, Y. A.;Betancourt, C.;Bezshyiko, I.;Bezshyyko, O.;Bick, D.;Bieschke, S.;Blanco, A.;Boehm, J.;Bogomilov, M.;Boiarska, I.;Bondarenko, K.;Bonivento, W. M.;Borburgh, J.;Boyarsky, A.;Brenner, R.;Breton, D.;Brignoli, A.;Büscher, V.;Buonaura, A.;Buontempo, S.;Cadeddu, S.;Calviani, M.;Campanelli, M.;Casolino, M.;Charitonidis, N.;Chau, P.;Chauveau, J.;Chepurnov, A.;Chernyavskiy, M.;Choi, K. -Y.;Chumakov, A.;Climescu, M.;Conaboy, A.;Congedo, L.;Cornelis, K.;Cristinziani, M.;Crupano, A.;Dallavalle, G. M.;Datwyler, A.;D’Ambrosio, N.;D’Appollonio, G.;de Asmundis, R.;De Carvalho Saraiva, J.;De Lellis, G.;de Magistris, M.;De Roeck, A.;De Serio, M.;De Simone, D.;Dedenko, L.;Dergachev, P.;Di Crescenzo, A.;Di Giulio, L.;Dib, C.;Dijkstra, H.;Dmitrenko, V.;Dougherty, L. A.;Dolmatov, A.;Donskov, S.;Drohan, V.;Dubreuil, A.;Durhan, O.;Ehlert, M.;Elikkaya, E.;Enik, T.;Etenko, A.;Fedin, O.;Fedotovs, F.;Ferrillo, M.;Ferro-Luzzi, M.;Filippov, K.;Fini, R. A.;Fischer, H.;Fonte, P.;Franco, C.;Fraser, M.;Fresa, R.;Froeschl, R.;Fukuda, T.;Galati, G.;Gall, J.;Gatignon, L.;Gavrilov, G.;Gentile, V.;Goddard, B.;Golinka-Bezshyyko, L.;Golovatiuk, A.;Golovtsov, V.;Golubkov, D.;Golutvin, A.;Gorbounov, P.;Gorbunov, D.;Gorbunov, S.;Gorkavenko, V.;Gorshenkov, M.;Grachev, V.;Grandchamp, A. L.;Graverini, E.;Grenard, J. -L.;Grenier, D.;Grichine, V.;Gruzinskii, N.;Guler, A. M.;Guz, Yu.;Haefeli, G. J.;Hagner, C.;Hakobyan, H.;Harris, I. W.;van Herwijnen, E.;Hessler, C.;Hollnagel, A.;Hosseini, B.;Hushchyn, M.;Iaselli, G.;Iuliano, A.;Jacobsson, R.;Joković, D.;Jonker, M.;Kadenko, I.;Kain, V.;Kaiser, B.;Kamiscioglu, C.;Karpenkov, D.;Kershaw, K.;Khabibullin, M.;Khalikov, E.;Khaustov, G.;Khoriauli, G.;Khotyantsev, A.;Kim, Y. G.;Kim, V.;Kitagawa, N.;Ko, J. -W.;Kodama, K.;Kolesnikov, A.;Kolev, D. I.;Kolosov, V.;Komatsu, M.;Kono, A.;Konovalova, N.;Kormannshaus, S.;Korol, I.;Korol’ko, I.;Korzenev, A.;Koukovini Platia, E.;Kovalenko, S.;Krasilnikova, I.;Kudenko, Y.;Kurbatov, E.;Kurbatov, P.;Kurochka, V.;Kuznetsova, E.;Lacker, H. M.;Lamont, M.;Lantwin, O.;Lauria, A.;Lee, K. S.;Lee, K. Y.;Leonardo, N.;Lévy, J. -M.;Loschiavo, V. P.;Lopes, L.;Lopez Sola, E.;Lyons, F.;Lyubovitskij, V.;Maalmi, J.;Magnan, A. -M.;Maleev, V.;Malinin, A.;Manabe, Y.;Managadze, A. K.;Manfredi, M.;Marsh, S.;Marshall, A. M.;Mefodev, A.;Mermod, P.;Miano, A.;Mikado, S.;Mikhaylov, Yu.;Mikulenko, A.;Milstead, D. A.;Mineev, O.;Montesi, M. C.;Morishima, K.;Movchan, S.;Muttoni, Y.;Naganawa, N.;Nakamura, M.;Nakano, T.;Nasybulin, S.;Ninin, P.;Nishio, A.;Obinyakov, B.;Ogawa, S.;Okateva, N.;Osborne, J.;Ovchynnikov, M.;Owtscharenko, N.;Owen, P. H.;Pacholek, P.;Park, B. D.;Pastore, A.;Patel, M.;Pereyma, D.;Perillo-Marcone, A.;Petkov, G. L.;Petridis, K.;Petrov, A.;Podgrudkov, D.;Poliakov, V.;Polukhina, N.;Prieto Prieto, J.;Prokudin, M.;Prota, A.;Quercia, A.;Rademakers, A.;Rakai, A.;Ratnikov, F.;Rawlings, T.;Redi, F.;Reghunath, A.;Ricciardi, S.;Rinaldesi, M.;Rodin, Volodymyr;Rodin, Viktor;Robbe, P.;Rodrigues Cavalcante, A. B.;Roganova, T.;Rokujo, H.;Rosa, G.;Ruchayskiy, O.;Ruf, T.;Samoylenko, V.;Samsonov, V.;Sanchez Galan, F.;Santos Diaz, P.;Sanz Ull, A.;Sato, O.;Savchenko, E. S.;Schliwinski, J. S.;Schmidt-Parzefall, W.;Schumann, M.;Serra, N.;Sgobba, S.;Shadura, O.;Shakin, A.;Shaposhnikov, M.;Shatalov, P.;Shchedrina, T.;Shchutska, L.;Shevchenko, V.;Shibuya, H.;Shihora, L.;Shirobokov, S.;Shustov, A.;Silverstein, S. B.;Simone, S.;Simoniello, R.;Skorokhvatov, M.;Smirnov, S.;Soares, G.;Sohn, J. Y.;Sokolenko, A.;Solodko, E.;Starkov, N.;Stoel, L.;Stramaglia, M. E.;Sukhonos, D.;Suzuki, Y.;Takahashi, S.;Tastet, J. L.;Teterin, P.;Than Naing, S.;Timiryasov, I.;Tioukov, V.;Tommasini, D.;Torii, M.;Treille, D.;Tsenov, R.;Ulin, S.;Ursov, E.;Ustyuzhanin, A.;Uteshev, Z.;Uvarov, L.;Vankova-Kirilova, G.;Vannucci, F.;Venkova, P.;Venturi, V.;Vidulin, I.;Vilchinski, S.;Vincke, Heinz;Vincke, Helmut;Visone, C.;Vlasik, K.;Volkov, A.;Voronkov, R.;van Waasen, S.;Wanke, R.;Wertelaers, P.;Williams, O.;Woo, J. -K.;Wurm, M.;Xella, S.;Yilmaz, D.;Yilmazer, A. U.;Yoon, C. S.;Zaytsev, Yu.;Zelenov, A.;Zimmerman, J.
2022-01-01
Abstract
The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/63070
Citazioni
ND
21
21
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.