An effective way to study the complex seismic soil-structure interaction phenomena is to investigate the response of physical scaled models in 1-g or n-g laboratory devices. The outcomes of an extensive experimental campaign carried out on scaled models by means of the shaking table of the Bristol Laboratory for Advanced Dynamics Engineering, University of Bristol, UK, are discussed in the present paper. The experimental model comprises an oscillator connected to a single or a group of piles embedded in a bi-layer deposit. Different pile head conditions, that is free head and fixed head, several dynamic properties of the structure, including different masses at the top of the single degree of freedom system, excited by various input motions, e.g. white noise, sinedwells and natural earthquake strong motions recorded in Italy, have been tested. In the present work, the modal dynamic response of the soil–pile–structure system is assessed in terms of period elongation and system damping ratio. Furthermore, the effects of oscillator mass and pile head conditions on soil–pile response have been highlighted, when the harmonic input motions are considered.

Soil-pile-structure interaction: Experimental outcomes from shaking table tests

Di Sarno L;SIMONELLI, ARMANDO LUCIO
2016-01-01

Abstract

An effective way to study the complex seismic soil-structure interaction phenomena is to investigate the response of physical scaled models in 1-g or n-g laboratory devices. The outcomes of an extensive experimental campaign carried out on scaled models by means of the shaking table of the Bristol Laboratory for Advanced Dynamics Engineering, University of Bristol, UK, are discussed in the present paper. The experimental model comprises an oscillator connected to a single or a group of piles embedded in a bi-layer deposit. Different pile head conditions, that is free head and fixed head, several dynamic properties of the structure, including different masses at the top of the single degree of freedom system, excited by various input motions, e.g. white noise, sinedwells and natural earthquake strong motions recorded in Italy, have been tested. In the present work, the modal dynamic response of the soil–pile–structure system is assessed in terms of period elongation and system damping ratio. Furthermore, the effects of oscillator mass and pile head conditions on soil–pile response have been highlighted, when the harmonic input motions are considered.
2016
shake tables; soil-structure interaction; earthquake
File in questo prodotto:
File Dimensione Formato  
EESD_2015_SSI.pdf

non disponibili

Licenza: Non specificato
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/5954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 65
social impact