This paper reports the results of an experimental program to investigate the bonding behavior of two different types of fiberreinforced polymer (FRP) systems for strengthening RC members: externally bonded carbon (EBR) plates and bars or strips externally applied with the near-surface-mounted (NSM) technique. The overall experimental program consisted of 18 bond tests on concrete specimens strengthened with EBR carbon plates and 24 bond tests on concrete specimens strengthened with NSM systems (carbon, basalt, and glass bars, and carbon strips). Single shear tests (SST) were carried out on concrete prisms with low compressive strengths to investigate the bonding behavior of existing RC structures strengthened with different types of FRP systems. The performance of each reinforcement system is presented, discussed, and compared in terms of failure mode, debonding load, load-slip relationship, and strain distribution. The findings indicate that the NSM technique could represent a sound alternative to EBR systems because it allows debonding to be delayed, and hence FRP tensile strength to be better exploited.
Bond efficiency of RBR and NSM FRP systems for strengthening of concrete members
PECCE M;
2011-01-01
Abstract
This paper reports the results of an experimental program to investigate the bonding behavior of two different types of fiberreinforced polymer (FRP) systems for strengthening RC members: externally bonded carbon (EBR) plates and bars or strips externally applied with the near-surface-mounted (NSM) technique. The overall experimental program consisted of 18 bond tests on concrete specimens strengthened with EBR carbon plates and 24 bond tests on concrete specimens strengthened with NSM systems (carbon, basalt, and glass bars, and carbon strips). Single shear tests (SST) were carried out on concrete prisms with low compressive strengths to investigate the bonding behavior of existing RC structures strengthened with different types of FRP systems. The performance of each reinforcement system is presented, discussed, and compared in terms of failure mode, debonding load, load-slip relationship, and strain distribution. The findings indicate that the NSM technique could represent a sound alternative to EBR systems because it allows debonding to be delayed, and hence FRP tensile strength to be better exploited.File | Dimensione | Formato | |
---|---|---|---|
(asce)-FRP-2011.pdf
non disponibili
Licenza:
Non specificato
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.