: In addition to being novel biomarkers for poor cancer prognosis, members of Lymphocyte antigen-6 (Ly6) gene family also play a crucial role in avoiding immune responses to tumors. However, it has not been possible to identify the underlying mechanism of how Ly6 gene regulation operates in human cancers. Transcriptome, epigenome and proteomic data from independent cancer databases were analyzed in silico and validated independently in 334 colorectal cancer tissues (CRC). RNA mediated gene silencing of regulatory genes, and treatment with MEK and p38 MAPK inhibitors were also tested in vitro. We report here that the Lymphocyte antigen 6G6D is universally downregulated in mucinous CRC, while its activation progresses through the classical adenoma-carcinoma sequence. The DNA methylation changes in LY6G6D promoter are intimately related to its transcript regulation, epigenomic and histological subtypes. Depletion of DNA methyltransferase 1 (DNMT1), which maintains DNA methylation, results in the derepression of LY6G6D expression. RNA-mediated gene silencing of p38α MAPK or its selective chemical inhibition, however, reduces LY6G6D expression, reducing trametinib's anti-inflammatory effects. Patients treated with FOLFOX-based first-line therapy experienced decreased survival due to hypermethylation of the LY6G6D promoter and decreased p38α MAPK signaling. We found that cancer-specific immunodominant epitopes are controlled by p38α MAPKs signaling and suppressed by DNA methylation in histological variants with Mucinous differentiation. This work provides a promising prospective for clinical application in diagnosis and personalized therapeutic strategies of colorectal cancer.

Lymphocyte antigen 6G6D-mediated modulation through p38α MAPK and DNA methylation in colorectal cancer

Caruso, Francesca Pia;Cerulo, Luigi;Pancione, Massimo
2022-01-01

Abstract

: In addition to being novel biomarkers for poor cancer prognosis, members of Lymphocyte antigen-6 (Ly6) gene family also play a crucial role in avoiding immune responses to tumors. However, it has not been possible to identify the underlying mechanism of how Ly6 gene regulation operates in human cancers. Transcriptome, epigenome and proteomic data from independent cancer databases were analyzed in silico and validated independently in 334 colorectal cancer tissues (CRC). RNA mediated gene silencing of regulatory genes, and treatment with MEK and p38 MAPK inhibitors were also tested in vitro. We report here that the Lymphocyte antigen 6G6D is universally downregulated in mucinous CRC, while its activation progresses through the classical adenoma-carcinoma sequence. The DNA methylation changes in LY6G6D promoter are intimately related to its transcript regulation, epigenomic and histological subtypes. Depletion of DNA methyltransferase 1 (DNMT1), which maintains DNA methylation, results in the derepression of LY6G6D expression. RNA-mediated gene silencing of p38α MAPK or its selective chemical inhibition, however, reduces LY6G6D expression, reducing trametinib's anti-inflammatory effects. Patients treated with FOLFOX-based first-line therapy experienced decreased survival due to hypermethylation of the LY6G6D promoter and decreased p38α MAPK signaling. We found that cancer-specific immunodominant epitopes are controlled by p38α MAPKs signaling and suppressed by DNA methylation in histological variants with Mucinous differentiation. This work provides a promising prospective for clinical application in diagnosis and personalized therapeutic strategies of colorectal cancer.
2022
Anti-tumor immunity
Colorectal cancer
DNA methylation
Lymphocyte antigen 6G6D
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/56800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact