A standard assumption in control of network dynamical systems is that its nodes interact through pairwise interactions, which can be described by means of a directed graph. However, in several contexts, multibody, directed interactions may occur, thereby requiring the use of directed hypergraphs rather then digraphs. For the first time, we propose a strategy, inspired by the classic pinning control on graphs, that is tailored for controlling network systems coupled through a directed hypergraph. By drawing an analogy with signed graphs, we provide sufficient conditions for controlling the network onto the desired trajectory provided by the pinner, and a dedicated algorithm to design the control hyperedges.
Pinning control of hypergraphs
Liuzza D.
2022-01-01
Abstract
A standard assumption in control of network dynamical systems is that its nodes interact through pairwise interactions, which can be described by means of a directed graph. However, in several contexts, multibody, directed interactions may occur, thereby requiring the use of directed hypergraphs rather then digraphs. For the first time, we propose a strategy, inspired by the classic pinning control on graphs, that is tailored for controlling network systems coupled through a directed hypergraph. By drawing an analogy with signed graphs, we provide sufficient conditions for controlling the network onto the desired trajectory provided by the pinner, and a dedicated algorithm to design the control hyperedges.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.