Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.

Mild Endurance Exercise during Fasting Increases Gastrocnemius Muscle and Prefrontal Cortex Thyroid Hormone Levels through Differential BHB and BCAA-Mediated BDNF-mTOR Signaling in Rats

Giacco, Antonia;Cioffi, Federica;Silvestri, Elena;Petito, Giuseppe;Moreno, Maria;
2022-01-01

Abstract

Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.
2022
fasting
mild endurance exercise
tissue BCAA
tissue BHB
tissue thyroid hormone (T3)
Animals
Chromatography, Liquid
Fasting
Male
Mammals
Muscle, Skeletal
Prefrontal Cortex
Rats
Rats, Wistar
TOR Serine-Threonine Kinases
Tandem Mass Spectrometry
Thyroid Hormones
Amino Acids, Branched-Chain
Brain-Derived Neurotrophic Factor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/55999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact