Dither signals provide an effective way to compensate for nonlinearities in control systems. The seminal works by Zames and Shneydor, and more recently, by Mossaheb, present rigorous tools for systematic design of dithered systems. Their results rely, however, on a Lipschitz assumption relating to nonlinearity, and thus, do not cover important applications with discontinuities. This paper presents initial results on how to analyze and design dither in nonsmooth systems. In particular, it is shown that a dithered relay feedback system can be approximated by a smoothed system. Guidelines are given for tuning the amplitude and the period time of the dither signal, in order to stabilize the nonsmooth system.
Dither for Smoothing Relay Feedback Systems
Iannelli L;Vasca F
2003-01-01
Abstract
Dither signals provide an effective way to compensate for nonlinearities in control systems. The seminal works by Zames and Shneydor, and more recently, by Mossaheb, present rigorous tools for systematic design of dithered systems. Their results rely, however, on a Lipschitz assumption relating to nonlinearity, and thus, do not cover important applications with discontinuities. This paper presents initial results on how to analyze and design dither in nonsmooth systems. In particular, it is shown that a dithered relay feedback system can be approximated by a smoothed system. Guidelines are given for tuning the amplitude and the period time of the dither signal, in order to stabilize the nonsmooth system.File | Dimensione | Formato | |
---|---|---|---|
2003_published_tcas_dither_smoothing_relay.pdf
non disponibili
Licenza:
Non specificato
Dimensione
806.1 kB
Formato
Adobe PDF
|
806.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.