The interaction between two spatially separated systems is of strong interest in order to study a wide class of unconventional effects at cryogenic temperatures. Here we report on drag transverse voltage effects in multilayered systems containing superconducting and ferromagnetic materials. The sample under test is a conventional superconductor/insulator/ferromagnet (S/I/F) trilayer in a cross configuration. S/F as well as S/N (here N stands for normal metal) bilayers in the same geometry are also analyzed for comparison. Current–voltage (I–V) characteristics measured at T = 4.2 K in the presence of a perpendicular magnetic field show strong peculiarities related to the interaction between the layers. The results are interpreted in terms of interaction effects between the layers.
Drag voltages in a superconductor/insulator/ferromagnet trilayer
Romano P.
;
2021-01-01
Abstract
The interaction between two spatially separated systems is of strong interest in order to study a wide class of unconventional effects at cryogenic temperatures. Here we report on drag transverse voltage effects in multilayered systems containing superconducting and ferromagnetic materials. The sample under test is a conventional superconductor/insulator/ferromagnet (S/I/F) trilayer in a cross configuration. S/F as well as S/N (here N stands for normal metal) bilayers in the same geometry are also analyzed for comparison. Current–voltage (I–V) characteristics measured at T = 4.2 K in the presence of a perpendicular magnetic field show strong peculiarities related to the interaction between the layers. The results are interpreted in terms of interaction effects between the layers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.