When dealing with multiple clustering solutions, the problem of extrapolating a small number of good different solutions becomes crucial. This problem is faced by the so called Meta Clustering [12], that produces clusters of clustering solutions. Often such groups, called meta-clusters, represent alternative ways of grouping the original data. The next step is to construct a clustering which represents a chosen meta-cluster. In this work, starting from a population of solutions, we build meta-clusters by hierarchical agglomerative approach with respect to an entropy-based similarity measure. The selection of the threshold value is controlled by the user through interactive visualizations. When the meta-cluster is selected, the representative clustering is constructed following two different consensus approaches. The process is illustrated through a synthetic dataset. © 2008 Springer-Verlag Berlin Heidelberg.

Robust clustering by aggregation and intersection methods

Napolitano F.;
2008-01-01

Abstract

When dealing with multiple clustering solutions, the problem of extrapolating a small number of good different solutions becomes crucial. This problem is faced by the so called Meta Clustering [12], that produces clusters of clustering solutions. Often such groups, called meta-clusters, represent alternative ways of grouping the original data. The next step is to construct a clustering which represents a chosen meta-cluster. In this work, starting from a population of solutions, we build meta-clusters by hierarchical agglomerative approach with respect to an entropy-based similarity measure. The selection of the threshold value is controlled by the user through interactive visualizations. When the meta-cluster is selected, the representative clustering is constructed following two different consensus approaches. The process is illustrated through a synthetic dataset. © 2008 Springer-Verlag Berlin Heidelberg.
2008
978-3-540-85566-8
978-3-540-85567-5
Consensus clustering
Dendrogram visualization
mds visualization
Meta clustering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/53699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact