In this work a comprehensive multi-step machine learning data mining and data visualization framework is introduced. The different steps of the approach are: preprocessing, clustering, and visualization. A preprocessing based on a Robust Principal Component Analysis Neural Network for feature extraction of unevenly sampled data is used. Then a Probabilistic Principal Surfaces approach combined with an agglomerative procedure based on Fisher’s and Negentropy information is applied for clustering and labeling purposes. Furthermore, a Multi-Dimensional Scaling approach for a 2-dimensional data visualization of the clustered and labeled data is used. The method, which provides a user-friendly visualization interface in both 2 and 3 dimensions, can work on noisy data with missing points, and represents an automatic procedure to get, with no a priori assumptions, the number of clusters present in the data. Analysis and identification of genes periodically expressed in a human cancer cell line (HeLa) using cDNA microarrays is carried out as test case.

Clustering and visualization approaches for human cell cycle gene expression data analysis

Napolitano F.;
2008-01-01

Abstract

In this work a comprehensive multi-step machine learning data mining and data visualization framework is introduced. The different steps of the approach are: preprocessing, clustering, and visualization. A preprocessing based on a Robust Principal Component Analysis Neural Network for feature extraction of unevenly sampled data is used. Then a Probabilistic Principal Surfaces approach combined with an agglomerative procedure based on Fisher’s and Negentropy information is applied for clustering and labeling purposes. Furthermore, a Multi-Dimensional Scaling approach for a 2-dimensional data visualization of the clustered and labeled data is used. The method, which provides a user-friendly visualization interface in both 2 and 3 dimensions, can work on noisy data with missing points, and represents an automatic procedure to get, with no a priori assumptions, the number of clusters present in the data. Analysis and identification of genes periodically expressed in a human cancer cell line (HeLa) using cDNA microarrays is carried out as test case.
2008
data visualization, data analysis, Data analysis, Data visualization, Microarray data, microarray data, preprocessing analysis, Preprocessing analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/53659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact