Switched descriptor systems characterized by a repetitive finite sequence of modes can exhibit state discontinuities at the switching time instants. The amplitudes of these discontinuities depend on the consistency projectors of the modes. A switched ordinary differential equations model whose continuous state evolution approximates the state of the original system is proposed. Sufficient conditions based on linear matrix inequalities on the modes projectors ensure that the approximation error is of linear order of the switching period. The theoretical findings are applied to a switched capacitor circuit and numerical results illustrate the practical usefulness of the proposed model.

A smooth model for periodically switched descriptor systems

Mostacciuolo E.;Vasca F.
2022-01-01

Abstract

Switched descriptor systems characterized by a repetitive finite sequence of modes can exhibit state discontinuities at the switching time instants. The amplitudes of these discontinuities depend on the consistency projectors of the modes. A switched ordinary differential equations model whose continuous state evolution approximates the state of the original system is proposed. Sufficient conditions based on linear matrix inequalities on the modes projectors ensure that the approximation error is of linear order of the switching period. The theoretical findings are applied to a switched capacitor circuit and numerical results illustrate the practical usefulness of the proposed model.
2022
Descriptor systems
Differential algebraic equations
Linear/nonlinear models
Non-smooth and discontinuous problems
Power electronics
Switched systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/52045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact