Software developers rely on various repositories and communication channels to exchange relevant information about their ongoing tasks and the status of overall project progress. In this context, semi-structured and unstructured software artifacts have been leveraged by researchers to build recommender systems aimed at supporting developers in different tasks, such as transforming user feedback in maintenance and evolution tasks, suggesting experts, or generating software documentation. More specifically, Natural Language (NL) parsing techniques have been successfully leveraged to automatically identify (or extract) the relevant information embedded in unstructured software artifacts. However, such techniques require the manual identification of patterns to be used for classification purposes. To reduce such a manual effort, we propose an NL parsing-based tool for software artifacts analysis named NEON that can automate the mining of such rules, minimizing the manual effort of developers and researchers. Through a small study involving human subjects with NL processing and parsing expertise, we assess the performance of NEON in identifying rules useful to classify app reviews for software maintenance purposes. Our results show that more than one-third of the rules inferred by NEON are relevant for the proposed task. Demo webpage: https://github.com/adisorbo/NEON_tool

An NLP-based Tool for Software Artifacts Analysis

Di Sorbo A.
;
Visaggio C. A.;Di Penta M.;Canfora G.;
2021-01-01

Abstract

Software developers rely on various repositories and communication channels to exchange relevant information about their ongoing tasks and the status of overall project progress. In this context, semi-structured and unstructured software artifacts have been leveraged by researchers to build recommender systems aimed at supporting developers in different tasks, such as transforming user feedback in maintenance and evolution tasks, suggesting experts, or generating software documentation. More specifically, Natural Language (NL) parsing techniques have been successfully leveraged to automatically identify (or extract) the relevant information embedded in unstructured software artifacts. However, such techniques require the manual identification of patterns to be used for classification purposes. To reduce such a manual effort, we propose an NL parsing-based tool for software artifacts analysis named NEON that can automate the mining of such rules, minimizing the manual effort of developers and researchers. Through a small study involving human subjects with NL processing and parsing expertise, we assess the performance of NEON in identifying rules useful to classify app reviews for software maintenance purposes. Our results show that more than one-third of the rules inferred by NEON are relevant for the proposed task. Demo webpage: https://github.com/adisorbo/NEON_tool
2021
978-1-6654-2882-8
Natural Language Parsing
Software maintenance and evolution
Unstructured Data Mining
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/51397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact