Debris flows that have occurred in the area of San Martino Valle Caudina (Campania, Southern Italy) are described by geomorphological and hydrological analyses, focusing on the recent event of December 2019. This area can be considered a key example for studying debris-flow phenomena involving the pyroclastic mantle that covers the karstified bedrock along steep slopes. A hydrological analysis of the time series of the maximum annual rainfall, of durations of 1, 3, 6, 12 and 24 h, was carried out based on a new approach to assess rainstorm magnitude. It was quantified by measuring the deviation of the rainfall intensity from the normal conditions, within a specified time period. As the time series of annual maxima are typically skewed, a preliminary transformation is needed to normalize the distribution; to obtain the Z-value of the standard normal distribution, with mean μ = 0 and standard deviation σ = 1, different probability distribution functions were fitted to the actual data. A specific boxplot was used, with box width Z = ±1 and whiskers length Z = ±2. The deviations from these values provide the performance of the distribution fits. For the normalized time series, the rates shown by the trends and relative significance were investigated for the available time series of 11 rain gauges covering the Western–Central Campania region. The most critical condition for the debris-flow initiation appears to occur when a severe or extreme rainfall has a duration ≥ 12 h. The trend analysis did not detect statistically significant increases in the intensity of the rainfall of duration ≥ 6 h.
Rainstorm magnitude and debris flows in pyroclastic deposits covering steep slopes of karst reliefs in san martino valle caudina (Campania, southern Italy)
Leone G.
;Esposito L.;Fiorillo F.
2021-01-01
Abstract
Debris flows that have occurred in the area of San Martino Valle Caudina (Campania, Southern Italy) are described by geomorphological and hydrological analyses, focusing on the recent event of December 2019. This area can be considered a key example for studying debris-flow phenomena involving the pyroclastic mantle that covers the karstified bedrock along steep slopes. A hydrological analysis of the time series of the maximum annual rainfall, of durations of 1, 3, 6, 12 and 24 h, was carried out based on a new approach to assess rainstorm magnitude. It was quantified by measuring the deviation of the rainfall intensity from the normal conditions, within a specified time period. As the time series of annual maxima are typically skewed, a preliminary transformation is needed to normalize the distribution; to obtain the Z-value of the standard normal distribution, with mean μ = 0 and standard deviation σ = 1, different probability distribution functions were fitted to the actual data. A specific boxplot was used, with box width Z = ±1 and whiskers length Z = ±2. The deviations from these values provide the performance of the distribution fits. For the normalized time series, the rates shown by the trends and relative significance were investigated for the available time series of 11 rain gauges covering the Western–Central Campania region. The most critical condition for the debris-flow initiation appears to occur when a severe or extreme rainfall has a duration ≥ 12 h. The trend analysis did not detect statistically significant increases in the intensity of the rainfall of duration ≥ 6 h.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.