Abstract: Different environmental contaminants disturb the thyroid system at many levels. AlkylPhenols (APs), by-products of microbial degradation of AlkylPhenol Polyethoxylates (APEOs), constitute an important class of Endocrine Disrupting Chemicals (EDCs), the two most often used environmental APs being 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP). The purpose of the present study was to investigate the effects on the thyroid gland of the bioindicator Podarcis siculus of OP alone and in combination with NP. We used radioimmunoassay to determine their effects on plasma 3,3′,5-triiodo-L-thyronine (T3), 3,3′,5,5′-L-thyroxine (T4), thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH) levels in adult male lizards. We also investigated the impacts of AP treatments on hepatic 5′ORD (type II) deiodinase and hepatic content of T3 and T4. After OP and OP + NP administration, TRH levels increased, whereas TSH, T3, and T4 levels decreased. Lizards treated with OP and OP + NP had a higher concentration of T3 in the liver and 5′ORD (type II) activity, whereas T4 concentrations were lower than that observed in the control group. Moreover, histological examination showed that the volume of the thyroid follicles became smaller in treated lizards suggesting that that thyroid follicular epithelial cells were not functionally active following treatment. This data collectively suggest a severe interference with hypothalamus–pituitary–thyroid axis and a systemic imbalance of thyroid hormones. Graphic Abstract: [Figure not available: see fulltext.]

OctylPhenol (OP) Alone and in Combination with NonylPhenol (NP) Alters the Structure and the Function of Thyroid Gland of the Lizard Podarcis siculus

Sciarrillo R.
Conceptualization
;
De Falco M.
Validation
2021-01-01

Abstract

Abstract: Different environmental contaminants disturb the thyroid system at many levels. AlkylPhenols (APs), by-products of microbial degradation of AlkylPhenol Polyethoxylates (APEOs), constitute an important class of Endocrine Disrupting Chemicals (EDCs), the two most often used environmental APs being 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP). The purpose of the present study was to investigate the effects on the thyroid gland of the bioindicator Podarcis siculus of OP alone and in combination with NP. We used radioimmunoassay to determine their effects on plasma 3,3′,5-triiodo-L-thyronine (T3), 3,3′,5,5′-L-thyroxine (T4), thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH) levels in adult male lizards. We also investigated the impacts of AP treatments on hepatic 5′ORD (type II) deiodinase and hepatic content of T3 and T4. After OP and OP + NP administration, TRH levels increased, whereas TSH, T3, and T4 levels decreased. Lizards treated with OP and OP + NP had a higher concentration of T3 in the liver and 5′ORD (type II) activity, whereas T4 concentrations were lower than that observed in the control group. Moreover, histological examination showed that the volume of the thyroid follicles became smaller in treated lizards suggesting that that thyroid follicular epithelial cells were not functionally active following treatment. This data collectively suggest a severe interference with hypothalamus–pituitary–thyroid axis and a systemic imbalance of thyroid hormones. Graphic Abstract: [Figure not available: see fulltext.]
2021
Animals
Male
Phenols
Triiodothyronine
Lizards
Thyroid Gland
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/49595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact