In this contribution we present results concerning the very first application of fiber optic sensors (FOSs) for relative humidity (RH) monitoring in high radiations environments. After a few years of investigations at CERN in Geneva, since December 2013 our multidisciplinary research group has successfully installed 72 thermo-hygrometers based on Fiber Bragg Grating (FBG) technology, organized in multi-points arrays, in cold areas of the Tracker Bulkhead of the Compact Muon Solenoid (CMS) experiment, where hundreds of electrical connectors are housed and thousands of services, including many cold pipes, cross the volumes through them. In such a complicated environment, a constant hygrometric monitoring is vital, in order to avoid dangerous phenomena of condensation. The collected results in the last year of operation of the proposed sensors are effective and reliable, with temperature, relative humidity and dew point temperature measurements from the FBG-based devices in full agreement with the readings of conventional sensors, temporarily present in the detector. However, experience in operation has shown some limitations of this technology, which are fully detailed in the last section of the paper.
One year of FBG-based thermo-hygrometers in operation in the CMS experiment at CERN
Berruti GM;Consales M;Cusano A
2016-01-01
Abstract
In this contribution we present results concerning the very first application of fiber optic sensors (FOSs) for relative humidity (RH) monitoring in high radiations environments. After a few years of investigations at CERN in Geneva, since December 2013 our multidisciplinary research group has successfully installed 72 thermo-hygrometers based on Fiber Bragg Grating (FBG) technology, organized in multi-points arrays, in cold areas of the Tracker Bulkhead of the Compact Muon Solenoid (CMS) experiment, where hundreds of electrical connectors are housed and thousands of services, including many cold pipes, cross the volumes through them. In such a complicated environment, a constant hygrometric monitoring is vital, in order to avoid dangerous phenomena of condensation. The collected results in the last year of operation of the proposed sensors are effective and reliable, with temperature, relative humidity and dew point temperature measurements from the FBG-based devices in full agreement with the readings of conventional sensors, temporarily present in the detector. However, experience in operation has shown some limitations of this technology, which are fully detailed in the last section of the paper.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.