OBJECTIVE:The aim of this study was to assess the in vivo structural and functional remodeling of pial arteriolar networks in the ischemic area of rats submitted to transient middle cerebral artery occlusion (MCAO) and different time intervals of reperfusion.METHODS AND RESULTS:Two closed cranial windows were implanted above the left and right parietal cortex to observe pial microcirculation by fluorescence microscopy. The geometric characteristics of pial arteriolar networks, permeability increase, leukocyte adhesion and capillary density were analyzed after 1 h or 1, 7, 14 or 28 days of reperfusion. MCAO and 1-hour reperfusion caused marked microvascular changes in pial networks. The necrotic core was devoid of vessels, while the penumbra area presented a few arterioles, capillaries and venules with severe neuronal damage. Penumbra microvascular permeability and leukocyte adhesion were pronounced. At 7 days of reperfusion, new pial arterioles were organized in anastomotic vessels, overlapping the ischemic core and in penetrating pial arterioles. Vascular remodeling caused different arteriolar rearrangement up to 28 days of reperfusion and animals gradually regained their motor and sensory functions.CONCLUSIONS:Transient MCAO-induced pial-network remodeling is characterized by arteriolar anastomotic arcades. Remodeling mechanisms appear to be accompanied by an increased expression of nitric oxide synthases.
Long-term remodeling of rat pial microcirculation after transient middle cerebral artery occlusion and reperfusion
Sabatino L;
2013-01-01
Abstract
OBJECTIVE:The aim of this study was to assess the in vivo structural and functional remodeling of pial arteriolar networks in the ischemic area of rats submitted to transient middle cerebral artery occlusion (MCAO) and different time intervals of reperfusion.METHODS AND RESULTS:Two closed cranial windows were implanted above the left and right parietal cortex to observe pial microcirculation by fluorescence microscopy. The geometric characteristics of pial arteriolar networks, permeability increase, leukocyte adhesion and capillary density were analyzed after 1 h or 1, 7, 14 or 28 days of reperfusion. MCAO and 1-hour reperfusion caused marked microvascular changes in pial networks. The necrotic core was devoid of vessels, while the penumbra area presented a few arterioles, capillaries and venules with severe neuronal damage. Penumbra microvascular permeability and leukocyte adhesion were pronounced. At 7 days of reperfusion, new pial arterioles were organized in anastomotic vessels, overlapping the ischemic core and in penetrating pial arterioles. Vascular remodeling caused different arteriolar rearrangement up to 28 days of reperfusion and animals gradually regained their motor and sensory functions.CONCLUSIONS:Transient MCAO-induced pial-network remodeling is characterized by arteriolar anastomotic arcades. Remodeling mechanisms appear to be accompanied by an increased expression of nitric oxide synthases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.