The T(collapse) of poly(N-isopropylacrylamide), PNIPAM, shows a nonlinear dependence on the concentration of NaSCN or NaClO4; in the case of NaClO4, for example, at very low concentrations of the salt, T(collapse) increases with the concentration, while it has an opposite trend at higher NaClO4 concentrations [J. Am. Chem. Soc., 2005, 127, 14505]. These puzzling experimental data can be rationalized by considering that low charge density and poorly hydrated ions, such as thiocyanate and perchlorate, interact preferentially with the surface of the polymer, and cause an increase of the magnitude of the energetic term that stabilizes swollen conformations at low salt concentrations. However, as both swollen and collapsed PNIPAM conformations are accessible to such ions in view of their large conformational freedom, the difference in the number of ions bound to PNIPAM surface upon collapse changes little on increasing the salt concentration. Thus, the energetic term that favors swollen conformations increases with salt concentration to a lesser extent than the solvent-excluded volume term (linked to the density increase caused by salt addition to water), that favors collapsed conformations, leading to a nonlinear trend of T(collapse).
Effect of sodium thiocyanate and sodium perchlorate on poly(: N -isopropylacrylamide) collapse
Graziano G.
2019-01-01
Abstract
The T(collapse) of poly(N-isopropylacrylamide), PNIPAM, shows a nonlinear dependence on the concentration of NaSCN or NaClO4; in the case of NaClO4, for example, at very low concentrations of the salt, T(collapse) increases with the concentration, while it has an opposite trend at higher NaClO4 concentrations [J. Am. Chem. Soc., 2005, 127, 14505]. These puzzling experimental data can be rationalized by considering that low charge density and poorly hydrated ions, such as thiocyanate and perchlorate, interact preferentially with the surface of the polymer, and cause an increase of the magnitude of the energetic term that stabilizes swollen conformations at low salt concentrations. However, as both swollen and collapsed PNIPAM conformations are accessible to such ions in view of their large conformational freedom, the difference in the number of ions bound to PNIPAM surface upon collapse changes little on increasing the salt concentration. Thus, the energetic term that favors swollen conformations increases with salt concentration to a lesser extent than the solvent-excluded volume term (linked to the density increase caused by salt addition to water), that favors collapsed conformations, leading to a nonlinear trend of T(collapse).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.