Phasor Measurement Units (PMUs) are leading the way towards advanced monitoring, control and protection applications in power systems. In order to work properly, they rely on a precise time synchronization architecture. Currently, the synchronization accuracy achieved is in the order of one microsecond.The utilization of PMUs in medium and low voltage systems requires nano-second scale time synchronization accuracy, due to the lower active power flows and thus to the lower phase angle differences between two buses of a power system.To face this issue, this paper advocates the role of supersynchronized PMUs that are based on a novel time and frequency transfer algorithm developed by Thales Alenia Space (Synchronet). As demonstrated by experimental activities developed on a real case study, the adoption of this new paradigm allows PMUs to reach nano-second scale synchronization accuracy, hence representing an effective solution for time-synchronization in modern smart grids.

Development and Experimental Validation of a Super-Synchronized Phasor Measurement Unit

Vaccaro A.;Pepiciello A.
2019-01-01

Abstract

Phasor Measurement Units (PMUs) are leading the way towards advanced monitoring, control and protection applications in power systems. In order to work properly, they rely on a precise time synchronization architecture. Currently, the synchronization accuracy achieved is in the order of one microsecond.The utilization of PMUs in medium and low voltage systems requires nano-second scale time synchronization accuracy, due to the lower active power flows and thus to the lower phase angle differences between two buses of a power system.To face this issue, this paper advocates the role of supersynchronized PMUs that are based on a novel time and frequency transfer algorithm developed by Thales Alenia Space (Synchronet). As demonstrated by experimental activities developed on a real case study, the adoption of this new paradigm allows PMUs to reach nano-second scale synchronization accuracy, hence representing an effective solution for time-synchronization in modern smart grids.
2019
978-1-7281-3729-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/45183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact