In this paper we study the asymptotic behaviour of the Laplace equation in a periodically perforated domain of R-n, where we assume that the period is epsilon and the size of the holes is of the same order of greatness. An homogeneous Dirichlet condition is given on the whole exterior boundary of the domain and on a flat portion of diameter epsilon(n/n-2) if n > 2 (exp(-epsilon(-2)), if n = 2) of the boundary of every hole, while we take an homogeneous Neumann condition elsewhere.

Homogenization in perforated domains with mixed conditions

Cardone G;
2002-01-01

Abstract

In this paper we study the asymptotic behaviour of the Laplace equation in a periodically perforated domain of R-n, where we assume that the period is epsilon and the size of the holes is of the same order of greatness. An homogeneous Dirichlet condition is given on the whole exterior boundary of the domain and on a flat portion of diameter epsilon(n/n-2) if n > 2 (exp(-epsilon(-2)), if n = 2) of the boundary of every hole, while we take an homogeneous Neumann condition elsewhere.
File in questo prodotto:
File Dimensione Formato  
CardoneDApiceDeMaio-NoDEAsito.pdf

non disponibili

Licenza: Non specificato
Dimensione 265.21 kB
Formato Adobe PDF
265.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/4512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact