We treat the problem of robustness of output feedback controllers with respect to singular perturbations. Given a singularly perturbed control system whose boundary layer system is exponentially stable and whose reduced order system is exponentially stabilizable via a (possibly dynamical) output feedback controller, we present a sufficient condition which ensures that the system obtained by applying the same controller to the original full order singularly perturbed control system is exponentially stable for sufficiently small values of the perturbation parameter. This condition, which is less restrictive than those previously given in the literature, is shown to be always satisfied when the singular perturbation is due to the presence of fast actuators and/or sensors. Furthermore, we show explicitly that, in the linear time-invariant case, if this condition is not satisfied then there exists an output feedback controller which stabilizes the reduced order system but destabilizes the full order system.

On Output Feedback Control of Singularly Perturbed Systems

GLIELMO L;
2010

Abstract

We treat the problem of robustness of output feedback controllers with respect to singular perturbations. Given a singularly perturbed control system whose boundary layer system is exponentially stable and whose reduced order system is exponentially stabilizable via a (possibly dynamical) output feedback controller, we present a sufficient condition which ensures that the system obtained by applying the same controller to the original full order singularly perturbed control system is exponentially stable for sufficiently small values of the perturbation parameter. This condition, which is less restrictive than those previously given in the literature, is shown to be always satisfied when the singular perturbation is due to the presence of fast actuators and/or sensors. Furthermore, we show explicitly that, in the linear time-invariant case, if this condition is not satisfied then there exists an output feedback controller which stabilizes the reduced order system but destabilizes the full order system.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0096300310002031-main.pdf

non disponibili

Licenza: Non specificato
Dimensione 386.94 kB
Formato Adobe PDF
386.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/4485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact