Josephson junctions can be employed to reveal a sinusoidal signal in presence of Gaussian noise. To mimic realistic setups, the detection is performed linearly ramping the bias current until a switch to the finite voltage occurs; the analysis of the resulting switching currents can be exploited to decide about the presence of the harmonic drive. The signal is applied in two conditions: with an unknown initial phase (incoherent strategy) and with a known initial phase (coherent strategy). In both conditions, the analysis of the efficiency of the detection, performed through the signal-to-noise ratio, as estimated by the Kumar-Carrol index, shows that the dependence upon the Josephson junction ramp rate is beneficial, especially for relatively fast speed. One can conclude that the collection of the switching currents is a robust technique, and thus it is possible to exploit the advantages of a predetermined finite time to collect the data.
Detection of signals in presence of noise through Josephson junction switching currents
Yamapi R.
;Pierro V.;Filatrella G.
2020-01-01
Abstract
Josephson junctions can be employed to reveal a sinusoidal signal in presence of Gaussian noise. To mimic realistic setups, the detection is performed linearly ramping the bias current until a switch to the finite voltage occurs; the analysis of the resulting switching currents can be exploited to decide about the presence of the harmonic drive. The signal is applied in two conditions: with an unknown initial phase (incoherent strategy) and with a known initial phase (coherent strategy). In both conditions, the analysis of the efficiency of the detection, performed through the signal-to-noise ratio, as estimated by the Kumar-Carrol index, shows that the dependence upon the Josephson junction ramp rate is beneficial, especially for relatively fast speed. One can conclude that the collection of the switching currents is a robust technique, and thus it is possible to exploit the advantages of a predetermined finite time to collect the data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.