Heart Rate (HR) is one of the mostly used electrocardiogram (ECG) feature in many automatic detectors of anomalies. This paper deals with a preliminary study on a novel approach which, through the combination of Machine Learning (ML) and Compressed Sensing (CS), aims at retrieving vital information from a digital compressed single-lead electrocardiogram (ECG) signal. As a potential key information to estimate the heart rate, this study focuses on the identification of R-peak occurrences. The study has been conducted on two different types of signal both obtained from the compressed samples provided by a CS algorithm, already available in literature. The results demonstrate that the use of CS in combination with a ML technique can find high competitiveness when compared to a state of the art method working on the uncompressed ECG signal.

Identification of R-peak occurrences in compressed ECG signals

Laudato G.;De Vito L.;Picariello F.;Tudosa I.
2020-01-01

Abstract

Heart Rate (HR) is one of the mostly used electrocardiogram (ECG) feature in many automatic detectors of anomalies. This paper deals with a preliminary study on a novel approach which, through the combination of Machine Learning (ML) and Compressed Sensing (CS), aims at retrieving vital information from a digital compressed single-lead electrocardiogram (ECG) signal. As a potential key information to estimate the heart rate, this study focuses on the identification of R-peak occurrences. The study has been conducted on two different types of signal both obtained from the compressed samples provided by a CS algorithm, already available in literature. The results demonstrate that the use of CS in combination with a ML technique can find high competitiveness when compared to a state of the art method working on the uncompressed ECG signal.
2020
978-1-7281-5386-5
Compressed Sensing
ECG Signal
Feature extraction
Heart Rate
Internet-of-Medical-Things
Machine Learning
Wearable devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/44736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 4
social impact