Experiments have demonstrated the effectiveness of fiber-reinforced polymer (FRP) materials for the seismic strengthening of deficient reinforced concrete (RC) beam-column joints. However, only a few studies have focused on the seismic response of joint subassemblies that are designed to withstand moderate seismic actions where a strong column-weak beam mechanism is expected. In these circumstances, the high strain demand on the beam's plastic hinge may be critical for existing FRP-strengthening layouts. The present work analyzes the results of three experiments on full-scale, poorly detailed RC beam-column joints, with a strong column-weak beam hierarchy tested in the as-built and FRP-strengthened configurations. The proposed FRP-strengthening layouts are designed according to the recent trend of minimizing the level of disruption caused by their application. Accordingly, light FRP-strengthening solutions that are applied to the joint panel wholly from the exterior of a building or have a minimum impact on its downtime are tested and their performance is analyzed in terms of the global and local response.

Light FRP Strengthening of Poorly Detailed Reinforced Concrete Exterior Beam-Column Joints

Del Vecchio C.
;
2020-01-01

Abstract

Experiments have demonstrated the effectiveness of fiber-reinforced polymer (FRP) materials for the seismic strengthening of deficient reinforced concrete (RC) beam-column joints. However, only a few studies have focused on the seismic response of joint subassemblies that are designed to withstand moderate seismic actions where a strong column-weak beam mechanism is expected. In these circumstances, the high strain demand on the beam's plastic hinge may be critical for existing FRP-strengthening layouts. The present work analyzes the results of three experiments on full-scale, poorly detailed RC beam-column joints, with a strong column-weak beam hierarchy tested in the as-built and FRP-strengthened configurations. The proposed FRP-strengthening layouts are designed according to the recent trend of minimizing the level of disruption caused by their application. Accordingly, light FRP-strengthening solutions that are applied to the joint panel wholly from the exterior of a building or have a minimum impact on its downtime are tested and their performance is analyzed in terms of the global and local response.
2020
Experiments
Fiber-reinforced polymers
Minimum building downtime
Seismic retrofit
Shear failure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/44552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact