In this paper, we study the asymptotic behavior of minimizing solutions of a Ginzburg–Landau type functional with a positive weight and with convex potential near 0 and we estimate the energy in this case. We also generalize a lower bound for the energy of unit vector field given initially by Brezis–Merle–Rivière.

A Ginzburg–Landau Type Energy with Weight and with Convex Potential Near Zero

Perugia, Carmen
2020-01-01

Abstract

In this paper, we study the asymptotic behavior of minimizing solutions of a Ginzburg–Landau type functional with a positive weight and with convex potential near 0 and we estimate the energy in this case. We also generalize a lower bound for the energy of unit vector field given initially by Brezis–Merle–Rivière.
2020
Ginzburg–Landau functional; lower bound; variational problem
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/44436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact