This study shows the terrestrial and marine landforms present along the Cilento coast in the southern part of the Campania region (Italy). This coast is characterized by the alternation of bays, small beaches, and rocky headlands. In the adjacent submerged areas, there is a slightly inclined platform that has a maximum width of 30 km to the north, while it narrows in the south to approximately 6 km. A wide variety of landforms are preserved in this area, despite the high erodibility of the rocks emerging from the sea and the effects of human activities (construction of structures and infrastructures, fires, etc.). Of these landforms, we focused on those that enabled us to determine Quaternary sea-level variations, and, more specifically, we focused on the correlation between coastal and sea-floor topography in order to trace the geomorphological evolution of this coastal area. For this purpose, the Licosa Cape and the promontory of Ripe Rosse located in northern Cilento were used as reference areas. Methods were used that enabled us to obtain a detailed digital cartography of each area and consequently to apply physical-based coastal evolution models. We believe that this approach would provide a better management of coastal risk mitigation which is likely to become increasingly important in the perspective of climate change.
Terrestrial and marine landforms along the Cilento coastland (Southern Italy): A framework for landslide hazard assessment and environmental conservation
Valente A.
2019-01-01
Abstract
This study shows the terrestrial and marine landforms present along the Cilento coast in the southern part of the Campania region (Italy). This coast is characterized by the alternation of bays, small beaches, and rocky headlands. In the adjacent submerged areas, there is a slightly inclined platform that has a maximum width of 30 km to the north, while it narrows in the south to approximately 6 km. A wide variety of landforms are preserved in this area, despite the high erodibility of the rocks emerging from the sea and the effects of human activities (construction of structures and infrastructures, fires, etc.). Of these landforms, we focused on those that enabled us to determine Quaternary sea-level variations, and, more specifically, we focused on the correlation between coastal and sea-floor topography in order to trace the geomorphological evolution of this coastal area. For this purpose, the Licosa Cape and the promontory of Ripe Rosse located in northern Cilento were used as reference areas. Methods were used that enabled us to obtain a detailed digital cartography of each area and consequently to apply physical-based coastal evolution models. We believe that this approach would provide a better management of coastal risk mitigation which is likely to become increasingly important in the perspective of climate change.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.