A model-based characterization technique for lithium-ion batteries adopted in small satellites is proposed. The architecture of a hardware/software platform designed for the experimental analysis is described. Data obtained with suitable testing campaigns are exploited for the identification of the parameters of the battery model through the minimization of a cost function. In particular, the battery model represents either charging and discharging phases, with specific attention to the scenarios typical of electrical power systems in small satellites. Experimental and numerical results show the effectiveness of the proposed solution in terms of accuracy of the identified model.

A characterization system for LEO satellites batteries

Baccari S.;Vasca F.;Mostacciuolo E.;Iannelli L.;
2019

Abstract

A model-based characterization technique for lithium-ion batteries adopted in small satellites is proposed. The architecture of a hardware/software platform designed for the experimental analysis is described. Data obtained with suitable testing campaigns are exploited for the identification of the parameters of the battery model through the minimization of a cost function. In particular, the battery model represents either charging and discharging phases, with specific attention to the scenarios typical of electrical power systems in small satellites. Experimental and numerical results show the effectiveness of the proposed solution in terms of accuracy of the identified model.
978-1-7281-2126-0
automatic testing; Battery modeling; battery parameters identification; LEO satellite; state of charge
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12070/43253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact