Purpose: Managing efficiently educational Big Data, produced by Virtual Learning Environments, is becoming a compelling necessity, especially for those universities providing distance learning. This paper aims to propose a possible framework to compute efficiently key performance indicators, summarizing the trends of students’ academic careers, by using educational Big Data. Design/methodology/approach: The framework is designed and implemented in a distributed fashion. The parallel computation of the indicators through Map and Reduce nodes is carefully described, together with the workflow of data, from the educational sources to a NoSQL database and to the learning analytics engine. Findings: This framework was tested at eCampus University, an Italian distance learning institution, and it was able to significantly reduce the amount of time needed to compute key performance indicators. Moreover, by implementing a proper data representation dashboard, it resulted in a useful help and support for educational decisions and performance analyses and for revealing possible criticalities. Originality/value: The framework proposed integrates for the first time, to the best of the authors’ knowledge, a set of modules, designed and implemented in a distributed fashion, to compute key performance indicators for distance learning institutions. It can be used to analyze the dropouts and the outcomes of students and, therefore, to evaluate the performances of universities, which can, in turn, propose effective improvements toward enhancing the overall e-learning scenario.

Efficient computation of key performance indicators in a distance learning university

Pecori R.
;
2019-01-01

Abstract

Purpose: Managing efficiently educational Big Data, produced by Virtual Learning Environments, is becoming a compelling necessity, especially for those universities providing distance learning. This paper aims to propose a possible framework to compute efficiently key performance indicators, summarizing the trends of students’ academic careers, by using educational Big Data. Design/methodology/approach: The framework is designed and implemented in a distributed fashion. The parallel computation of the indicators through Map and Reduce nodes is carefully described, together with the workflow of data, from the educational sources to a NoSQL database and to the learning analytics engine. Findings: This framework was tested at eCampus University, an Italian distance learning institution, and it was able to significantly reduce the amount of time needed to compute key performance indicators. Moreover, by implementing a proper data representation dashboard, it resulted in a useful help and support for educational decisions and performance analyses and for revealing possible criticalities. Originality/value: The framework proposed integrates for the first time, to the best of the authors’ knowledge, a set of modules, designed and implemented in a distributed fashion, to compute key performance indicators for distance learning institutions. It can be used to analyze the dropouts and the outcomes of students and, therefore, to evaluate the performances of universities, which can, in turn, propose effective improvements toward enhancing the overall e-learning scenario.
2019
E-Learning; Educational big data; Key performance indicators; Learning analytics; MapReduce; Virtual learning environment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/42455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact