This paper addresses the problem faced by a large electricity consumer in determining the optimal procurement plan over a short-term time horizon. The inherent complexity of the problem, due to its dynamic and stochastic nature, is dealt by means of the stochastic programming modeling framework. In particular, a two-stage problem is formulated with the aim of establishing the optimal amount of electricity to be purchased through bilateral contracts and in the Day-Ahead Electricity Market. Recourse actions are used to hedge against uncertainty related to future electricity prices and consumer's needs. The optimal plan is defined so to minimize the overall cost and to control risk, which is measured in the form of violation of budget constraints. The stochastic model is dynamically solved in a rolling horizon fashion by iteratively considering more and more recent information and a planning horizon of decreasing length. Extensive numerical experiments have been carried out to assess the performance of the proposed dynamic decision approach. The results collected considering a real test case are very encouraging and provide evidence of the superiority of the approach also in comparison with other alternative procurement strategies. (C) 2011 Elsevier Inc. All rights reserved.

Short-term electricity procurement: A rolling horizon stochastic programming approach

Violi A.;
2011-01-01

Abstract

This paper addresses the problem faced by a large electricity consumer in determining the optimal procurement plan over a short-term time horizon. The inherent complexity of the problem, due to its dynamic and stochastic nature, is dealt by means of the stochastic programming modeling framework. In particular, a two-stage problem is formulated with the aim of establishing the optimal amount of electricity to be purchased through bilateral contracts and in the Day-Ahead Electricity Market. Recourse actions are used to hedge against uncertainty related to future electricity prices and consumer's needs. The optimal plan is defined so to minimize the overall cost and to control risk, which is measured in the form of violation of budget constraints. The stochastic model is dynamically solved in a rolling horizon fashion by iteratively considering more and more recent information and a planning horizon of decreasing length. Extensive numerical experiments have been carried out to assess the performance of the proposed dynamic decision approach. The results collected considering a real test case are very encouraging and provide evidence of the superiority of the approach also in comparison with other alternative procurement strategies. (C) 2011 Elsevier Inc. All rights reserved.
2011
Electricity market; Risk management; Rolling horizon framework; Stochastic programming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/42393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact