Nowadays a large amount of data is originated by complex systems, such as social networks, transportation systems, computer and service networks. These systems can be effectively modeled through graphs and studied by exploiting graph metrics, such as Betweenness Centrality (BC), a popular metric to analyze node centrality. In spite of its great potential, this metric requires long computation time, especially for large graphs. In this paper, we present a novel very fast algorithm to compute exact BC of undirected, scale-free graphs. The algorithm is based on clustering and exploits structural properties of graphs to find classes of equivalent nodes. By selecting one representative node for each class, we are able to calculate BC by significantly reducing the number of single-source shortest path explorations adopted by the Brandes' algorithm. The experimental evaluation of both sequential and map-reduce parallel versions reveals that our solution largely outperforms Brandes and recent heuristics, especially for large graphs while preserving good scalability.

Cluster-based Computation of Exact Betweenness Centrality in Large Undirected Graphs

Eugenio Zimeo
2019-01-01

Abstract

Nowadays a large amount of data is originated by complex systems, such as social networks, transportation systems, computer and service networks. These systems can be effectively modeled through graphs and studied by exploiting graph metrics, such as Betweenness Centrality (BC), a popular metric to analyze node centrality. In spite of its great potential, this metric requires long computation time, especially for large graphs. In this paper, we present a novel very fast algorithm to compute exact BC of undirected, scale-free graphs. The algorithm is based on clustering and exploits structural properties of graphs to find classes of equivalent nodes. By selecting one representative node for each class, we are able to calculate BC by significantly reducing the number of single-source shortest path explorations adopted by the Brandes' algorithm. The experimental evaluation of both sequential and map-reduce parallel versions reveals that our solution largely outperforms Brandes and recent heuristics, especially for large graphs while preserving good scalability.
2019
978-172810858-2
Graph theory, betweenness centrality, distributed computation, big data processing, complex networks analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/42214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact