The concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils from Caserta provincial territory, southern Italy, were systematically investigated along with their correlations with soil properties and health risk. The concentrations of ∑16PAHs ranged from 10.0 to 4191 ng/g, with a median (1 st quartile, Q1; 3rd quartile, Q3) of 28.5 (17.5–65.0) ng/g; Four-ring PAHs were the most abundant and contributed an average of ∼50.2% of the ∑16PAHs. Significant differences in the spatial distributions of PAHs in soil were observed, with higher levels of PAH contamination found in Caserta city and the surrounding areas. According to the positive matrix factorization (PMF) model, three sources were identified: chemical production and metal smelting, vehicle emissions, and coal/biomass combustion. Soil total organic carbon was significantly correlated with the concentration of total PAHs and the concentrations of PAHs with three-, four-, and five-rings. In contrast, only the concentration of ∑4DBPs (dibenzo(a,e)pyrene, dibenzo(a,h)pyrene, dibenzo(a,i)pyrene, dibenzo(a,l)pyrene) was well correlated with population density. The soil mass inventory of ∑16PAHs was estimated to be 6.87 metric tons (geometric mean). The ecological risks posed by PAHs in the study are negligible; however, health risks of exposure to soil-borne PAHs were identified based on a probabilistic risk model. © 2019 Elsevier B.V.

Investigation of polycyclic aromatic hydrocarbons in soils from Caserta provincial territory, southern Italy: Spatial distribution, source apportionment, and risk assessment

Cicchella D.;
2020-01-01

Abstract

The concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils from Caserta provincial territory, southern Italy, were systematically investigated along with their correlations with soil properties and health risk. The concentrations of ∑16PAHs ranged from 10.0 to 4191 ng/g, with a median (1 st quartile, Q1; 3rd quartile, Q3) of 28.5 (17.5–65.0) ng/g; Four-ring PAHs were the most abundant and contributed an average of ∼50.2% of the ∑16PAHs. Significant differences in the spatial distributions of PAHs in soil were observed, with higher levels of PAH contamination found in Caserta city and the surrounding areas. According to the positive matrix factorization (PMF) model, three sources were identified: chemical production and metal smelting, vehicle emissions, and coal/biomass combustion. Soil total organic carbon was significantly correlated with the concentration of total PAHs and the concentrations of PAHs with three-, four-, and five-rings. In contrast, only the concentration of ∑4DBPs (dibenzo(a,e)pyrene, dibenzo(a,h)pyrene, dibenzo(a,i)pyrene, dibenzo(a,l)pyrene) was well correlated with population density. The soil mass inventory of ∑16PAHs was estimated to be 6.87 metric tons (geometric mean). The ecological risks posed by PAHs in the study are negligible; however, health risks of exposure to soil-borne PAHs were identified based on a probabilistic risk model. © 2019 Elsevier B.V.
2020
Soils, Source apportionment, Risk assessment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/41878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 74
social impact