Recently, within the emerging framework of “lab-on-fiber” technologies, we successfully demonstrated the integration of phase-gradient plasmonic metasurfaces on the tip of an optical fiber. The resulting optical-fiber “meta-tips” promise to empower the typical fiber-optics application scenarios (e.g. sensing, telecommunications, imaging, etc.) with the advanced light-manipulation capabilities endowed by metasurfaces. Here, we explore more in detail the possibility to exploit this platform in label-free biological or chemical sensing applications. Specifically, we carry out a parametric study of the surface sensitivity and show that phase-gradient metasurfaces generally outperform their gradient-free counterparts, without imposing additional fabrication complexity. Therefore, the phase gradient can be effectively exploited as an additional degree of freedom in the design of high-sensitivity devices.

Evaluation of fiber-optic phase-gradient meta-tips for sensing applications

Principe, M.;Consales, M.;Castaldi, G.;Galdi, V.;Cusano, A.
2019-01-01

Abstract

Recently, within the emerging framework of “lab-on-fiber” technologies, we successfully demonstrated the integration of phase-gradient plasmonic metasurfaces on the tip of an optical fiber. The resulting optical-fiber “meta-tips” promise to empower the typical fiber-optics application scenarios (e.g. sensing, telecommunications, imaging, etc.) with the advanced light-manipulation capabilities endowed by metasurfaces. Here, we explore more in detail the possibility to exploit this platform in label-free biological or chemical sensing applications. Specifically, we carry out a parametric study of the surface sensitivity and show that phase-gradient metasurfaces generally outperform their gradient-free counterparts, without imposing additional fabrication complexity. Therefore, the phase gradient can be effectively exploited as an additional degree of freedom in the design of high-sensitivity devices.
2019
lab-on-fiber technology; Metasurfaces; plasmonic nanosensors; sensing; surface waves; Biotechnology; Electronic, Optical and Magnetic Materials; Ceramics and Composites; Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/39466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 16
social impact