Chlorpyrifos (CPF) is an organophosphate insecticide used to control pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce cerebral cortex thinning, alteration of long-term brain cognitive function, and Parkinson-like symptoms, but the mechanisms of these processes are not fully understood. In this study, we aimed to gain a deeper understanding of the alterations induced in the brains of mice chronically exposed to CPF by dietary intake. For our purpose, we analysed F1 offspring (sacrificed at 3 and 8 months) of Mus musculus, treated in utero and postnatally with 3 different doses of CPF (0.1-1-10 mg/kg/day). Using RT2 Profiler PCR Arrays, we evaluated the alterations in the expression of 84 genes associated with neurodegenerative diseases. In the brains of exposed mice, we evidenced a clear dose-response relationship for AChE inhibition and alterations of gene expression. Some of the genes that were steadily down-regulated, such as Pink1, Park 2, Sv2b, Gabbr2, Sept5 and Atxn2, were directly related to Parkinson’s onset. Our experimental results shed light on the possibility that long-term CPF exposure may exert membrane signalling alterations which make brain cells more susceptible to develop neurodegenerative diseases.
Specific effects of chronic dietary exposure to chlorpyrifos on brain gene expression-A mouse study
Ambrosino, Concetta;
2017-01-01
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide used to control pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce cerebral cortex thinning, alteration of long-term brain cognitive function, and Parkinson-like symptoms, but the mechanisms of these processes are not fully understood. In this study, we aimed to gain a deeper understanding of the alterations induced in the brains of mice chronically exposed to CPF by dietary intake. For our purpose, we analysed F1 offspring (sacrificed at 3 and 8 months) of Mus musculus, treated in utero and postnatally with 3 different doses of CPF (0.1-1-10 mg/kg/day). Using RT2 Profiler PCR Arrays, we evaluated the alterations in the expression of 84 genes associated with neurodegenerative diseases. In the brains of exposed mice, we evidenced a clear dose-response relationship for AChE inhibition and alterations of gene expression. Some of the genes that were steadily down-regulated, such as Pink1, Park 2, Sv2b, Gabbr2, Sept5 and Atxn2, were directly related to Parkinson’s onset. Our experimental results shed light on the possibility that long-term CPF exposure may exert membrane signalling alterations which make brain cells more susceptible to develop neurodegenerative diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.