Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a Model Predictive Control (MPC) scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach.

Stochastic Model Predictive Control for Economic/Environmental Operation Management of Microgrids: an Experimental Case Study

Glielmo L.
2016-01-01

Abstract

Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a Model Predictive Control (MPC) scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach.
2016
Stochastic model predictive control; Two stage stochastic programming; Microgrids
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/3894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 106
social impact