We report an original design approach based on the modal dispersion curves for the development of long period gratings in transition mode near the dispersion turning point exhibiting ultrahigh refractive index sensitivity. The theoretical model predicting a giant sensitivity of 9900 nm per refractive index unit in a watery environment was experimentally validated with a result of approximately 9100 nm per refractive index unit around an ambient index of 1.3469. This result places thin film coated LPGs as an alternative to other fiber-based technologies for high-performance chemical and biological sensing applications.

Giant sensitivity of long period gratings in transition mode near the dispersion turning point: An integrated design approach

Cusano A
2012-01-01

Abstract

We report an original design approach based on the modal dispersion curves for the development of long period gratings in transition mode near the dispersion turning point exhibiting ultrahigh refractive index sensitivity. The theoretical model predicting a giant sensitivity of 9900 nm per refractive index unit in a watery environment was experimentally validated with a result of approximately 9100 nm per refractive index unit around an ambient index of 1.3469. This result places thin film coated LPGs as an alternative to other fiber-based technologies for high-performance chemical and biological sensing applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/3519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 120
social impact