The nuclear factor (NF)-κB signaling pathway controls a variety of important biological functions, including immune and inflammatory responses, differentiation, cell growth, tumorigenesis, and apoptosis. Two distinct pathways of NF-κB activation are known. The classical, canonical pathway is found virtually in all mammalian cells and NF-κB activation is mediated by the IKK complex, consisting of the IKK1/IKKα and IKK2/IKKβ catalytic kinase subunits and the NF-κB essential modulator (NEMO)/IKKγ protein. The NF-κB-driven transcriptional responses to many different stimuli have been widely characterized in the pathophysiology of the mammalian immune system, mainly because this transcription factor regulates the expression of cytokines, growth factors, and effector enzymes in response to ligation of cellular receptors involved in immunity and inflammation. However, an impressive literature produced in the last two decades shows that NF-κB signaling plays an important role also outside of the immune system, performing different roles and functions depending on the type of tissue and organ. In thyroid, NF-κB signaling is crucial for thyrocytes survival and expression of critical thyroid markers, including Nis, Ttf1, Pax8, Tpo, and thyroglobulin, making this transcription factor essential for maintenance of normal thyroid function.
The NF-κB Family of Transcription Factors and Its Role in Thyroid Physiology
Zotti, Tiziana;Vito, Pasquale
;Stilo, Romania
2018-01-01
Abstract
The nuclear factor (NF)-κB signaling pathway controls a variety of important biological functions, including immune and inflammatory responses, differentiation, cell growth, tumorigenesis, and apoptosis. Two distinct pathways of NF-κB activation are known. The classical, canonical pathway is found virtually in all mammalian cells and NF-κB activation is mediated by the IKK complex, consisting of the IKK1/IKKα and IKK2/IKKβ catalytic kinase subunits and the NF-κB essential modulator (NEMO)/IKKγ protein. The NF-κB-driven transcriptional responses to many different stimuli have been widely characterized in the pathophysiology of the mammalian immune system, mainly because this transcription factor regulates the expression of cytokines, growth factors, and effector enzymes in response to ligation of cellular receptors involved in immunity and inflammation. However, an impressive literature produced in the last two decades shows that NF-κB signaling plays an important role also outside of the immune system, performing different roles and functions depending on the type of tissue and organ. In thyroid, NF-κB signaling is crucial for thyrocytes survival and expression of critical thyroid markers, including Nis, Ttf1, Pax8, Tpo, and thyroglobulin, making this transcription factor essential for maintenance of normal thyroid function.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.