Characterization of spatial variation of heavy metals in urban soils is essential to identify pollution sources and potential risks to humans and the environment. While heavy metals concentration in soils depends also on the nature of bedrock and on abiotic and biotic factors, it can be argued that nowadays, due to increasing human activities, it is determined mainly by anthropogenic sources. We determined concentrations and spatial distribution of heavy metals, with particular focus on those potentially toxic (As, Cr, Pb, V, and Zn), in urban and peri-urban soils of Cosenza-Rende (southern Italy). One hundred forty-nine samples of topsoil (0-10 cm) were collected and analyzed for 36 elements by X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In addition, 18 samples of rocks were collected on outcrops of whole area and analyzed by ICP-ES and ICP-MS. Geostatistical methods were used to map the concentrations of major oxides and several minor elements. Heavy metals in the analyzed samples showed a wide range of concentrations, primarily controlled by the geochemical composition of bedrock, with the notable exceptions of Cu, Pb, and Zn, whose concentrations are heavily affected by land use and anthropogenic pollution in urban areas. Geochemical analysis and spatial distribution showed that high concentrations of potentially toxic elements are found in soils near major roads, indicating that anthropogenic factors determine the anomalies in these areas.

A Geostatistical Approach to Assess Concentration and Spatial Distribution of Heavy Metals in Urban Soils

Cicchella D;
2012-01-01

Abstract

Characterization of spatial variation of heavy metals in urban soils is essential to identify pollution sources and potential risks to humans and the environment. While heavy metals concentration in soils depends also on the nature of bedrock and on abiotic and biotic factors, it can be argued that nowadays, due to increasing human activities, it is determined mainly by anthropogenic sources. We determined concentrations and spatial distribution of heavy metals, with particular focus on those potentially toxic (As, Cr, Pb, V, and Zn), in urban and peri-urban soils of Cosenza-Rende (southern Italy). One hundred forty-nine samples of topsoil (0-10 cm) were collected and analyzed for 36 elements by X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In addition, 18 samples of rocks were collected on outcrops of whole area and analyzed by ICP-ES and ICP-MS. Geostatistical methods were used to map the concentrations of major oxides and several minor elements. Heavy metals in the analyzed samples showed a wide range of concentrations, primarily controlled by the geochemical composition of bedrock, with the notable exceptions of Cu, Pb, and Zn, whose concentrations are heavily affected by land use and anthropogenic pollution in urban areas. Geochemical analysis and spatial distribution showed that high concentrations of potentially toxic elements are found in soils near major roads, indicating that anthropogenic factors determine the anomalies in these areas.
2012
Geochemistry; Heavy metals; Multi-gaussian kriging; Pollution; Soil
File in questo prodotto:
File Dimensione Formato  
A Geostatistical Approach to Assess Concentration.......pdf

non disponibili

Licenza: Non specificato
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/3109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 68
social impact